Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Proteomics ; : e2200253, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-2242874

ABSTRACT

The recent and sudden outbreak of monkeypox in numerous non-endemic countries requires expanding its surveillance immediately and understanding its origin and spread. As learned from the COVID-19 pandemic, appropriate detection techniques are crucial to achieving such a goal. Mass spectrometry has the advantages of a rapid response, low analytical interferences, better precision, and easier multiplexing to detect various pathogens and their variants. In this proteomic dataset, we report experimental data on the proteome of the monkeypox virus (MPXV) recorded by state-of-the-art shotgun proteomics, including data-dependent and data-independent acquisition for comprehensive coverage. We highlighted 152 viral proteins, corresponding to an overall proteome coverage of 79.5 %. Among the 1371 viral peptides detected, 35 peptides with the most intense signals in mass spectrometry were selected, representing a subset of 13 viral proteins. Their relevance as potential candidate markers for virus detection by targeted mass spectrometry is discussed. This report should assist the rapid development of mass spectrometry-based tests to detect a pathogen of increasing concern.

2.
J Clin Med ; 11(19)2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2043823

ABSTRACT

The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract, the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood. It has been proposed that SARS-CoV-2 can productively infect enterocytes, damaging the intestinal barrier and contributing to inflammatory response, which might lead to GI manifestations, including diarrhea. Here, we report a methodological approach to assess the evidence supporting the sequence of events driving SARS-CoV-2 enteric infection up to gut adverse outcomes. Exploring evidence permits to highlight knowledge gaps and current inconsistencies in the literature and to guide further research. Based on the current insights on SARS-CoV-2 intestinal infection and transmission, we then discuss the potential implication on clinical practice, including on long COVID. A better understanding of the GI implication in COVID-19 is still needed to improve disease management and could help identify innovative therapies or preventive actions targeting the GI tract.

3.
J Clin Med ; 11(18)2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2033032

ABSTRACT

Alteration in gut microbiota has been associated with COVID-19. However, the underlying mechanisms remain poorly understood. Here, we outlined three potential interconnected mechanistic pathways leading to gut dysbiosis as an adverse outcome following SARS-CoV-2 presence in the gastrointestinal tract. Evidence from the literature and current uncertainties are reported for each step of the different pathways. One pathway investigates evidence that intestinal infection by SARS-CoV-2 inducing intestinal inflammation alters the gut microbiota. Another pathway links the binding of viral S protein to angiotensin-converting enzyme 2 (ACE2) to the dysregulation of this receptor, essential in intestinal homeostasis-notably for amino acid metabolism-leading to gut dysbiosis. Additionally, SARS-CoV-2 could induce gut dysbiosis by infecting intestinal bacteria. Assessing current evidence within the Adverse Outcome Pathway framework justifies confidence in the proposed mechanisms to support disease management and permits the identification of inconsistencies and knowledge gaps to orient further research.

4.
J Clin Med ; 11(15)2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1969322

ABSTRACT

Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.

5.
Methods Mol Biol ; 2452: 167-182, 2022.
Article in English | MEDLINE | ID: covidwho-1844266

ABSTRACT

A comprehensive cartography of viral and host proteins expressed during the different stages of SARS-CoV-2 infection is key to decipher the molecular mechanisms of pathogenesis. For the most detailed analysis, proteins should be first purified and then proteolyzed with trypsin in the presence of detergents. The resulting peptide mixtures are resolved by reverse phase ultrahigh pressure liquid chromatography and then identified by a high-resolution tandem mass spectrometer. The thousands of spectra acquired for each fraction can then be assigned to peptide sequences using a relevant protein sequence database, comprising viral and host proteins and potential contaminants from the growth medium or from the operator. The peptides are evidencing proteins and their intensities are used to infer the abundance of their corresponding proteins. Data analysis allows for highlighting the viral and host proteins dynamics. Here, we describe the sample preparation method adapted to profile SARS-CoV-2 -infected cell models, the shotgun proteomics pipeline to record experimental data, and the workflow for data interpretation to analyze infection-induced proteomic changes in a time-resolved manner.


Subject(s)
COVID-19 , Proteomics , Humans , Peptides , Proteomics/methods , SARS-CoV-2 , Tandem Mass Spectrometry
6.
Environ Microbiol ; 24(9): 4299-4316, 2022 09.
Article in English | MEDLINE | ID: covidwho-1819862

ABSTRACT

Since the beginning of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the gastrointestinal (GI) tract has emerged as an important organ influencing the propensity to and potentially the severity of the related COVID-19 disease. However, the contribution of the SARS-CoV-2 intestinal infection on COVID-19 pathogenesis remains to be clarified. In this exploratory study, we highlighted a possible link between alterations in the composition of the gut microbiota and the levels of SARS-CoV-2 RNA in the gastrointestinal tract, which could be more important than the presence of SARS-CoV-2 in the respiratory tract, COVID-19 severity and GI symptoms. As established by metaproteomics, altered molecular functions in the microbiota profiles of high SARS-CoV-2 RNA level faeces highlight mechanisms such as inflammation-induced enterocyte damage, increased intestinal permeability and activation of immune response that may contribute to vicious cycles. Uncovering the role of this gut microbiota dysbiosis could drive the investigation of alternative therapeutic strategies to favour the clearance of the virus and potentially mitigate the effect of the SARS-CoV-2 infection.


Subject(s)
COVID-19 , Microbiota , Dysbiosis , Feces , Humans , Microbiota/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
7.
Anal Bioanal Chem ; 413(29): 7265-7275, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1235721

ABSTRACT

COVID-19 is the most disturbing pandemic of the past hundred years. Its causative agent, the SARS-CoV-2 virus, has been the subject of an unprecedented investigation to characterize its molecular structure and intimate functioning. While markers for its detection have been proposed and several diagnostic methodologies developed, its propensity to evolve and evade diagnostic tools and the immune response is of great concern. The recent spread of new variants with increased infectivity requires even more attention. Here, we document how shotgun proteomics can be useful for rapidly monitoring the evolution of the SARS-CoV-2 virus. We evaluated the heterogeneity of purified SARS-CoV-2 virus obtained after culturing in the Vero E6 cell line. We found that cell culture induces significant changes that are translated at the protein level, such changes being detectable by tandem mass spectrometry. Production of viral particles requires careful quality control which can be easily performed by shotgun proteomics. Although considered relatively stable so far, the SARS-CoV-2 genome turns out to be prone to frequent variations. Therefore, the sequencing of SARS-CoV-2 variants from patients reporting only the consensus genome after its amplification would deserve more attention and could benefit from more in-depth analysis of low level but crystal-clear signals, as well as complementary and rapid analysis by shotgun proteomics.


Subject(s)
Genome, Viral , Proteomics/methods , SARS-CoV-2/isolation & purification , Amino Acid Sequence , Cell Culture Techniques , Humans , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Tandem Mass Spectrometry/methods , Viral Proteins/chemistry , Virulence
8.
J Proteome Res ; 19(11): 4407-4416, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960283

ABSTRACT

Rapid but yet sensitive, specific, and high-throughput detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is key to diagnose infected people and to better control the spread of the virus. Alternative methodologies to PCR and immunodiagnostics that would not require specific reagents are worthy to investigate not only for fighting the COVID-19 pandemic but also to detect other emergent pathogenic threats. Here, we propose the use of tandem mass spectrometry to detect SARS-CoV-2 marker peptides in nasopharyngeal swabs. We documented that the signal from the microbiota present in such samples is low and can be overlooked when interpreting shotgun proteomic data acquired on a restricted window of the peptidome landscape. In this proof-of-concept study, simili nasopharyngeal swabs spiked with different quantities of purified SARS-CoV-2 viral material were used to develop a nanoLC-MS/MS acquisition method, which was then successfully applied on COVID-19 clinical samples. We argue that peptides ADETQALPQR and GFYAQGSR from the nucleocapsid protein are of utmost interest as their signal is intense and their elution can be obtained within a 3 min window in the tested conditions. These results pave the way for the development of time-efficient viral diagnostic tests based on mass spectrometry.


Subject(s)
Betacoronavirus/chemistry , Clinical Laboratory Techniques/methods , Coronavirus Infections , Nasopharynx/virology , Pandemics , Pneumonia, Viral , Tandem Mass Spectrometry/methods , COVID-19 , COVID-19 Testing , Chromatography, Liquid , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Nucleocapsid Proteins/chemistry , Phosphoproteins , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
9.
Proteomics ; 21(1): e2000198, 2021 01.
Article in English | MEDLINE | ID: covidwho-942454

ABSTRACT

Proteomics offers a wide collection of methodologies to study biological systems at the finest granularity. Faced with COVID-19, the most worrying pandemic in a century, proteomics researchers have made significant progress in understanding how the causative virus hijacks the host's cellular machinery and multiplies exponentially, how the disease can be diagnosed, and how it develops, as well as its severity predicted. Numerous cellular targets of potential interest for the development of new antiviral drugs have been documented. Here, the most striking results obtained in the proteomics field over this first semester of the pandemic are presented. The molecular machinery of SARS-CoV-2 is much more complex than initially believed, as many post-translational modifications can occur, leading to a myriad of proteoforms and a broad heterogeneity of viral particles. The interplay of protein-protein interactions, protein abundances, and post-translational modifications has yet to be fully documented to provide a full picture of this intriguing but lethal biological threat. Proteomics has the potential to provide rapid detection of the SARS-CoV-2 virus by mass spectrometry proteotyping, and to further increase the knowledge of severe respiratory syndrome COVID-19 and its long-term health consequences.


Subject(s)
COVID-19/prevention & control , Proteome/metabolism , Proteomics/methods , SARS-CoV-2/metabolism , Tandem Mass Spectrometry/methods , Viral Proteins/analysis , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/virology , Humans , Pandemics , Protein Interaction Maps , SARS-CoV-2/physiology
10.
Emerg Microbes Infect ; 9(1): 1712-1721, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-632216

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has resulted in a pandemic and is continuing to spread rapidly around the globe. No effective vaccine is currently available to prevent COVID-19, and intense efforts are being invested worldwide into vaccine development. In this context, all technology platforms must overcome several challenges resulting from the use of an incompletely characterized new virus. These include finding the right conditions for virus amplification for the development of vaccines based on inactivated or attenuated whole viral particles. Here, we describe a shotgun tandem mass spectrometry workflow, the data produced can be used to guide optimization of the conditions for viral amplification. In parallel, we analysed the changes occurring in the host cell proteome following SARS-CoV-2 infection to glean information on the biological processes modulated by the virus that could be further explored as potential drug targets to deal with the pandemic.


Subject(s)
Antigens, Viral/biosynthesis , Betacoronavirus/immunology , Proteomics/methods , Viral Vaccines/immunology , Virion/immunology , Animals , Antigens, Viral/immunology , Chlorocebus aethiops , SARS-CoV-2 , Tandem Mass Spectrometry , Vero Cells
11.
Proteomics ; 20(14): e2000107, 2020 07.
Article in English | MEDLINE | ID: covidwho-419474

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a crucial tool for fighting the COVID-19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS-CoV-2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data-dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass-spectrometry method development and diagnostic of the new SARS-CoV-2 is proposed and the best candidates are commented.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/virology , Peptides/analysis , Pneumonia, Viral/virology , Viral Proteins/analysis , Amino Acid Sequence , Animals , Betacoronavirus/isolation & purification , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/diagnosis , Humans , Pandemics , Pneumonia, Viral/diagnosis , Proteomics , SARS-CoV-2 , Tandem Mass Spectrometry , Vero Cells , Viral Structural Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL